INSTRUNEXUS www.lnstrunexus.com

Loop Drawing Preparation

www.iiistiuiicxus.com

Top 20 Interview Questions & Answers

Part 1: Fundamental Concepts

1. What is an instrument loop diagram?

An instrument loop diagram is a detailed schematic drawing that shows the complete wiring and components of a single instrumentation control loop. It provides a comprehensive picture of a loop, from the primary sensor in the field, through all the wiring and junction boxes, to the controller and final control element (like a valve).

2. What is the primary purpose of a loop diagram?

Its primary purpose is to provide a single-source document for **maintenance**, **troubleshooting**, **and commissioning**. Unlike a P&ID, which shows the process, a loop diagram shows the detailed electrical and connection information needed to install, calibrate, and repair a specific control loop.

3. Who are the main users of loop diagrams?

- Instrument Technicians: For troubleshooting, calibration, and repair.
- Construction & Commissioning Engineers: For installation, wiring verification, and initial loop checks.
- Operations Personnel: For understanding how a specific loop works and how to bypass it for maintenance.
- Control System Engineers: For programming and verifying I/O assignments.

Loop Drawing Preparation

www.Instrunexus.com

4. How does a loop diagram differ from a P&ID?

A P&ID (Piping and Instrumentation Diagram) shows the overall process flow and the relationship between equipment and instruments. A loop diagram focuses on just **one of those instruments** and shows its detailed wiring.

- **P&ID:** Shows the "what" and "where" in the process.
- Loop Diagram: Shows the "how" it's all connected electrically.

5. What is a "control loop"?

A control loop is a system designed to maintain a process variable at a desired setpoint. It consists of four basic parts:

- 1. **Sensor/Transmitter:** Measures the process variable (e.g., a pressure transmitter).
- 2. **Controller:** Compares the measurement to the setpoint and calculates a response (e.g., a PID block in a DCS).
- 3. **Final Control Element:** Implements the controller's decision (e.g., a control valve).
- 4. **Process:** The system being controlled. A loop diagram documents the connections for this entire system.

Part 2: Key Information & Symbols

6. What essential information must be included on a loop diagram?

A complete loop diagram should include:

- Instrument Identification: The full tag number of all devices in the loop.
- Wiring Details: Terminal numbers, wire numbers, cable numbers, and wire colors.
- **Location Information:** The location of the field instrument, junction boxes, and control panel/cabinet.

Loop Drawing Preparation

www.Instrunexus.com

- **Control System I/O:** The specific DCS or PLC, I/O card, channel, and terminal number where the loop is connected.
- **Power Supply Information:** The source of power for the loop (e.g., 24 VDC), including breaker or fuse numbers.
- **Signal Information:** The type of signal (e.g., 4-20mA, Foundation Fieldbus) and calibration range of the instrument.

7. What standard is commonly used for symbols on a loop diagram?

The **ISA-5.1** standard ("Instrumentation Symbols and Identification") is the most widely used standard for the symbols representing instruments and control functions. For example, a circle represents a standalone instrument, while a circle inside a square represents a shared control/display function (like in a DCS).

8. How are terminal blocks shown on a loop diagram?

Terminal blocks, in both field junction boxes and marshalling cabinets, are typically shown as a series of small squares or circles, each with a unique number. The diagram clearly shows which wire number lands on which terminal number.

9. What is a "bubble" or "balloon" in instrumentation diagrams?

A "bubble" is the circle used to represent an instrument. The text inside the bubble is the instrument's **tag number**. The lines on the bubble indicate its location:

- No line: Field-mounted device.
- **Solid line:** Main control room (e.g., front of a panel).
- Dashed line: Auxiliary location (e.g., back of a panel).
- **Double solid line:** Local or field-mounted panel.

10. How is a junction box represented?

A junction box (JB) is typically shown as a dashed-line box enclosing a set of terminal blocks. The JB is given a unique identification number, and the diagram shows the

Loop Drawing Preparation

www.Instrunexus.com

incoming "home run" cable from the control room and the outgoing cables to the individual field devices.

11. What does the term "home run cable" mean?

A "home run cable" is the main multi-pair or multi-core cable that runs from the central control room (or marshalling cabinet) out to a field junction box. It carries the signals for multiple instrument loops.

Part 3: The Preparation Process

12. What are the primary input documents needed to prepare a loop diagram?

You need several key documents to gather all the necessary information:

- P&ID: To identify the instrument tag number and its function in the process.
- Instrument Specification Sheet (Data Sheet): To get the calibration range, signal type, and power requirements.
- Control System I/O Assignment List: To find the specific DCS/PLC card and terminal number.
- Junction Box Wiring Diagrams: To get the JB and terminal numbers.
- Vendor Drawings: For specific wiring details of the transmitter, valve, or other devices.

13. What is the first step in preparing a loop diagram?

The first step is to **identify the complete loop** on the P&ID. This means finding the sensor, the controller, and the final element that all work together under a single tag number (e.g., FIC-101, which includes flow transmitter FT-101, controller FIC-101, and flow valve FV-101).

Loop Drawing Preparation

www.Instrunexus.com

14. What software is typically used to create loop diagrams?

Specialized Computer-Aided Design (CAD) software is used. Common platforms include:

- AutoCAD Electrical: A general-purpose electrical CAD tool.
- SmartPlant Instrumentation (SPI) / Intergraph INtools: A powerful, databasedriven tool that can automatically generate loop diagrams based on the project database.
- **AVEVA Instrumentation:** Another major database-driven design suite. Using a database-driven tool is highly efficient as it ensures consistency between all project documents.

15. What is the role of a "loop folder"?

A loop folder (or loop package) is a collection of all documentation related to a specific control loop, assembled for commissioning and maintenance. The loop diagram is the central document in this folder, often accompanied by the instrument spec sheet, calibration certificates, and I/O checkout forms.

16. Why is a review and approval process important for loop diagrams?

A formal review process is critical to catch errors before construction begins. The draft loop diagram is typically reviewed by:

- Control System Engineer: To verify the I/O assignment is correct.
- **Electrical Engineer:** To check power supply and grounding details.
- **Instrument Engineer:** To ensure it matches the instrument specs and P&ID. This process prevents costly and time-consuming rework in the field.

Part 4: Practical Application & Interpretation

Loop Drawing Preparation

www.Instrunexus.com

17. Using a loop diagram, how do you trace the signal path of a simple pressure transmitter?

You would trace the signal path by "reading" the diagram from left to right (field to control room):

- 1. Start at the pressure transmitter (PT) in the field.
- 2. Follow the wire numbers from the transmitter's terminals to a specific terminal block in a **field junction box (JB)**.
- 3. Follow the connection from the JB terminal block, through the **home run cable**, to a terminal block in a **marshalling cabinet** inside the control building.
- 4. Trace the cross-wiring from the marshalling cabinet to the specific **I/O card** channel and terminals of the DCS or PLC.

18. How does a loop diagram show that a transmitter is "loop-powered"?

In a loop-powered (2-wire) 4-20mAcircuit, the diagram will show a positive (+) and negative (-) wire originating from the DCS/PLC analog input card. These two wires will run all the way to the transmitter's + and - terminals, with no separate power source shown connecting to the transmitter. The diagram makes it clear that the power and signal share the same pair of wires.

19. How would a 4-wire instrument be shown differently?

A 4-wire instrument would have **two separate pairs of connections** shown on the diagram:

- One pair for the signal (e.g., 4-20mA output) going to the control system I/O.
- A second, separate pair for its power supply (e.g., 120 VAC or 24 VDC), originating from a power distribution panel or fuse.

Loop Drawing Preparation

www.Instrunexus.com

20. How can a loop diagram help you troubleshoot a faulty instrument?

It is the most essential troubleshooting tool. If a transmitter is not reading correctly, you can use the loop diagram to:

- Verify Power: Identify the correct fuse or breaker to check if the loop has power.
- Check for Opens/Shorts: Know every terminal point between the field and the control room where you can connect a multimeter to check for continuity or shorts.
- **Isolate the Problem:** By checking the signal at the junction box, you can determine if the problem is with the instrument itself or with the home run cable back to the control room, saving a huge amount of time.